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We use the Hamiltonian formulation of kinetic theory to perform a stability analysis of nonthermal fixed
points in a non-Abelian plasma. We construct a perturbative expansion of the Fokker-Planck collision
kernel in an adiabatic approximation and show that the (next-to-)leading order solutions reproduce the
known nonthermal fixed point scaling exponents. Working at next-to-leading order, we derive the stability
equations for scaling exponents and find the relaxation rate to the nonthermal fixed point. This approach
provides the basis for an understanding of the prescaling phenomena observed in QCD kinetic theory and

nonrelativistic Bose gas systems.
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I. INTRODUCTION

Dynamics of isolated quantum many-body systems
quenched far from equilibrium have been an object of inten-
sive study during recent years. Examples range from the
dynamics of quark-gluon matter created in heavy-ion colli-
sions [1,2] to quenches in ultracold atomic systems [3,4].
Starting from a far-from-equilibrium initial condition, these
systems may exhibit a transient regime of self-similar evolu-
tion associated to a nonthermal fixed point [5,6]. As a result
of such self-similarity, the nonequilibrium dynamics is fully
encoded in a set of universal scaling exponents and functions.
Over the last decade, the existence of nonthermal fixed
points has been confirmed both experimentally [7-9] and in
numerical studies [10-13]. On the theoretical side, progress
has been made in predicting and explaining the observed
scaling exponents using various techniques such as 1/N-
resummed kinetic theory [14,15], low-energy effective des-
cription [16], and the functional renormalization group [17].

However, much less is known about how a general
system evolves to such a self-similar regime. In [12,18], it
was proposed that already, before achieving fully devel-
oped scaling, the system may exhibit a dramatic reduction
in complexity such that its dynamics can be described by a
few slowly evolving quantities. In particular, numerically
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solving the leading-order QCD kinetic theory [19] it was
observed that much before the scaling with universal
exponents is established, the evolution is already governed
by the fixed-point scaling function with time-dependent
scaling exponents [18]. In this work, we are going to
consider a toy model of an expanding Yang-Mills plasma
and derive approximate equations that govern the dynamics
of its scaling exponents. In particular, we derive the
stability equations for scaling exponents, which can be
interpreted as relaxation equations to nonthermal fixed
point and demonstrate for the first time that the nonthermal
fixed point is stable under small perturbations.

II. PRELIMINARY THEORY

A. Prescaling

We begin our discussion with a quick overview of the
concept of (pre)scaling, in particular, in the context of
heavy-ion collisions. At sufficiently high energies, where
the gauge coupling is small due to asymptotic freedom
[20,21], the time evolution of gluons (¢) and quarks (g) is
described by distribution functions f,,(z, pr. p.). Since
the system is longitudinally expanding, the distributions
depend on transverse (pr) and longitudinal momenta (p,)
and on proper time (7) [22,23]. In the scaling regime, the
original gluon distribution obeys

scaling

f@.pr.p.) = “fs(Zpr.7p,). (1)

with dimensionless 7 — 7/7,¢ and pr, = pr./Q,, in
terms of some (arbitrary) time 7., and characteristic
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momentum scale Q,. The exponents «, f, and y are
universal, and the nonthermal fixed-point distribution
fs 1is universal up to normalizations [24], which has
been established numerically using classical-statistical
lattice simulations [1]. The exponents are expected to be
apmss = —2/3, Pemss =0, and ypyss = 1/3 according
to the first stage of the ‘“bottom-up” thermalization
scenario [2] based on number-conserving and small-angle
scatterings, or agp = —3/4, fgp = 0, and ygp = 1/4 in a
variant of bottom-up, including the effects of plasma
instabilities [25].

Similarly, during prescaling the gluon distribution
satisfies

prescaling
= Ta

f(T’ Pr, pz) (T)fS(Tﬂ(T)PT7Ty(T)pZ)7 (2)
with nonuniversal time-dependent exponents a(z), B(7),
and y(7). One can therefore regard prescaling as a partial
fixed point at which the scaling function fg has already
reached its fixed-point form, whereas the scaling exponents
a, B, and y still deviate from their asymptotic values.

B. Hamiltonian formulation of Kkinetic theory

In order to derive equations governing the prescaling
dynamics, we are going to employ the Hamiltonian
formulation of kinetic theory [26-28], the key points of
which we will briefly summarize in this section. We start
off with the general Boltzmann equation of a boost-
invariant (in z direction) and transversally homogeneous
system [29],

0.0, | (6. pecor) = Clle ). )

Here, f is a distribution density, C[f] is a collision integral,
7 is the longitudinal proper time, and p, and pr are
longitudinal and traversal momenta, respectively. For the
following discussion of prescaling, it will prove convenient
to recast our problem into an (infinite) set of ordinary
differential equations for moments of the occupation
number f,

dd
Ny (T) = / ﬁp?’ﬁf (. P2 Pr)- 4)

Although for a general collision integral the expression

d
| il e pepr) 5

does not have a simple form, in terms of the moments 7, ,,;
in this work, we are going to consider the kernel that is
linear in f,

Clfl = -4V f. (6)

and thus allows to reformulate the problem in the form

alogrnn,m = _Hn,m;n’,m’nn’.m” (7)

with
Hn.m;n’m’ = (21’1 + 1)5n,n’5m,m’ - Tf][2]’l(2l/l - 1)5n—1,n’5m,m’
+ mzénﬁn’ém—lm’]' (8)

Here, summation over repeated indices is implied, and the
momentum diffusion parameter ¢ is parametrically given
by [30,31]

d

) ~an? [ B Pepn) O

for SU(N,.) gauge theories in the limit of high occupancies.
The Fokker-Planck-type collision integral (6) often serves
as a toy model in the context of the bottom-up ther-
malization scenario. In the highly anisotropic limit one
may, furthermore, neglect the transversal part, i.e., take
C[f] = —4d5,_. so that the “Hamiltonian” reduces to

7—(n,n;n’,m’ = [(2)’1 + 1)5n,n’ - q2n(2n - 1)511—1,n’}5m,m’ (10)

and acquires a block diagonal structure. Here, for further
convenience we have also introduced ¢ = 4.
Adopting Dirac notation, we may write

olw) = —Hly),  y=logz/, (11)

with
Hn,m;n’m’ = <n’m|ﬁl|n,’ml>’ (12)

Ny = (n, mly),

where the inner product is given by [?(Zsy X Z,) and
{|n,m) = |n) ® |m)} span the respective natural basis,

1 1 0 1
0 0 1 0

(13)

Equation (11) with the Hamiltonian (10) will be the subject
of discussion in the remaining text.

C. Adiabatic approximation

One notes that H depends on y only through the
parameter ¢(y), which immediately suggests applying
the well-known adiabatic approximation from quantum
mechanics. In contrast to quantum mechanics (of closed
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systems), however, the operator H is not necessarily
(anti-)Hermitian, and hence the method requires some
modifications. A particularly convenient generalization to
the case of non-Hermitian yet diagonalizable Hamiltonians,
which we summarize in Appendix A, was developed
in [32]. The key idea is to, instead, consider

() = Ulg)) " w (). (14)

with U being a transformation that diagonalizes H at a
given instance y,

U(q)"'H(q)U(q) = diag(4,(q).42(q). ...) = Hy(q). (15)

The equation for |y) is given by

o) = ~H.x). (16)

where
A,=H,+U"9,U. (17)

Splitting the last term into its diagonal and off-diagonal
parts,

A

Hy(q) = Hy(q) + diagonal partof [U(¢)~'9,U(q)]. (18a)

V(q) = off-diagonal partof [U(q)~'9,U(q)]. (18b)

one immediately notices that, as opposed to the diagonal
piece H, the off-diagonal term V is nonzero if and only if
dyq # 0. This suggests that one may treat V as a perturba-
tion as long as g depends on y slowly enough and thereby
construct solutions to (16) in a perturbative manner:

= W), (19)

=0

Here (see Appendix A),

»—wamkfwmmW»<m

with |n) and €, = 4, + 0,7, being eigenvectors and eigen-
values of H, respectively, and y,, being the non-Hermitian
generalization of the Berry phase,

n@wzlﬁkmwm&»*@UWQmm. (21)

The coefficients CELI) may be computed iteratively:

_Zm: A " 42V, (2)exp [— / dswnm(S)} (@),

(22a)
Y (v) = C = (nl(0)) = (n|U(q(0)) "y (0)),  (22b)
where
0 (¥) = €a(q(¥)) — €,(q(y)) (23)
and
Vin(¥) = (1 (g(y))|m). (24)

For the Fokker-Planck collision kernel (10), one has to
double the number of indices: |n) — |n,m), cf. (13).
Straightforward computations then yield (see Appendix B)

ny (2n=1)N n—k5 >k
Upmii(q) = { &) e "0, 1 2 ke (25)
0, otherwise,
with
U(q)~" = U(=q), (26)
and
€nm(q) =2n =+ 1’ Vnm,kl(‘]) = yqn(2n - 1>6rt.k-"-15nzl'
(27)

Knowing U~!

ficients C,(,% in terms of initial moments of the distribution:

, one may also express zeroth-order coef-

Cﬁ=MMW(»ﬂwW
= 3o m{U(a(0) k. k.l (0)

=3 (1)1 ;;:i

III. PRESCALING

Now we are ready to study the time-dependent scaling
exponents (prescaling) in the adiabatic approximation of
the Hamiltonian formalism. To make analytical progress,
we will define a small expansion parameter and will study
the scaling exponents’ behavior at leading and next-to-
leading orders.

First, consider the Ith order contribution to the (n, m)th
moment of the distribution function,

( Q(TO))n_knk,m(TO)' (28)
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= 00 Uk p)

kp

_Z< ) 22:1)

(n,mlyO(

(29)

Here, we have used (25) to get the second line. For the
perturbation (27), the iterative relation (22) takes a very
simple form:

- —; A "2V pr(2) exp {— /0 stwkm,,,,(s)}

x Cpr'(2)

K2k —1) / "d20.9()e ) @), (30)

Upon repeating the procedure (30) [ times one readily
obtains

0 o, o ko @k=1)
—c® (-1
Con¥) = GV k= 2=

y 21 2-1
X/ dzl/ dzz.../ dzV(z1)V(z2)-.V(z)),
0 0 0

(31)

with C{"% =

that

Ay dz, AZI dz... Az’_] dz;V(z1)V(z2).. V(z))
= /0 "dz /0 " dzp... /0 AL TV()V(z). V()
= ;‘Ay le Ay de... /Oy leT{V(Z])V(Zz)-..V(ZZ)},

(32)

= 0 and V(z) = exp(2z)0,q(z). We now recall

where 7 is a time-ordering operator. Since V(z;) are
ordinary numbers, the time-ordering operator drops out,
and we are left with

/ 1 A0 k (2k—1)! v(7)]!
Cl(craz(f) = (_1> Cl(c—>1m(l) (2]{—21— 1)” |:A<‘L'):| > (33)

where we went back to 7 = 75 exp(y) (setting also 75 = 1
for brevity). Here, we have also introduced the functions

C(l) (y)e(n—3k— 1 )yé‘ln—k.

v(r) =

H@
\\

dlog g(7)
)14+ ==L (34
[ * dlog7’ (34)

Q)

and

A®) = s (39)

that will serve as an expansion parameter. Assembling
everything together, we end up with

(n.mlyD(z)) = (2n = Dltnle" 4 (0)]" [~ (7))

(0) k-1
m[A(T)]
Zl' k—1)! kl —k)!(2k=21-1)1""

(36)

A. Perturbative expansion

To go further, we need to truncate the series (36). To do
so, let us first estimate the large-time behavior of the
quantities entering the expansion (36). Near the fixed point,
g ~ 7*%~2-=7« implying the large-time behavior,

AT > 1) ~ 7720424773, (37)
Hence, if 2a, — 2f, —y, + 3 > 0, then we expect A(z) to
decay at large times 7z and therefore may use it as a small
parameter, at least when the scaling exponents are not too
far off from their asymptotic values. Note that this con-
dition holds both for the bottom-up [2] and for the modified
[25] scaling solutions. On the contrary, for » the same
analysis results in

v(r > 1) ~ const. (38)

One may even estimate the asymptotic value as

1 +2a, — 28, —
3+2a*—2ﬂ*—y*'

(39)

v(t > o0) =

We thus conclude that the kth term in (n, m|y!) (7)) at large
times scales as

<n’ mll//(l) (T > 1)>kthterm NTn_lank_l7 nz k > l’ (40)
with A(z) playing a role of the small parameter. The
leading-order (LO) contribution to (n, m|y!)(y)) is then
given by the /th term in (36),

n—1,n

(n.mly\D(2)) o ~7"7'9", n>1, (41)
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the next-to-leading order (NLO) contribution is given by
the (I + 1)st term,

(n, mly(2))no ~ 713" A, nxl+1, (42)
etc. Importantly, this behavior is independent of /, which
alludes to a possible need of resummation of all the terms of

the same kind:

<n7 m\‘l/(l) (T»lth term

LO=0(A?)

n—1

+ Z(n, m‘l//(l) (T)>(l+l)stleml toe
1=0

(43)

NLO<O(Al)

see Fig. 1 for visualization and more details.

We are now in a position to derive equations that
govern the prescaling dynamics at next-to-leading order.
According to the above discussion, at this order the
(n, m)th moment of the distribution takes the form

<n,m|w<r>>NLo=<2n—1)!!7"-1a<r>"{cé?2i<”) (@)

=0 \!
(0) n=l n—1
RRSHNE) B (R IS S
=0
nl ,
n-1p B
l 3 .
2 - -
1k ,
0 - -
FIG. 1. Schematic depiction of the resummation scheme. At

any order [ of perturbation theory the leading-order (blue) and the
next-to-leading-order (red) contributions to (n, m|y) are given by
the Ith and (I + 1)st term in the expansion (36), respectively. In
both cases the resulting behavior does not depend on the order /,
cf. (41) and (42), so that one has to take all the orders of
perturbation theory into account.

Recognizing the binomial expansion, we readily obtain

(n, mly (7))xro = @un? ™' q(7)"[1 = v(2))"

X {1 L p, A }

1—v(r) (45)

with a,,, = C)(2n = 1)!1 and b,, = C\"/c?).

Om

B. Fixed-point equations

Up until this point, we have not assumed any particular
ansatz for the time evolution of moments n,, of the
distribution function. If the prescaling assumption (2) holds,
however, then we can recast the equations for the moments in
terms of time-dependent scaling exponents. Following the
original work [18], in order to reflect instantaneous scaling
properties we redefine exponents in (2) as

o dt’
e o[ [t
1 7T

which for constant a reduces to the power law z% The rate
of change of a particular moment n,,,,, as well as of the
momentum diffusion parameter ¢, is given by a linear
combination of scaling exponents:

(40)

ologn, ,(t)

e = a() = (m+ 2)p(x) = (2a+ )y(@), - (472)
alog a(r) B
Cologr 2a(7) = 24(z) = y(2), (47b)

in d = 3 spatial dimensions. This also implies

ov(r)
Togr — [ +2a(0) =25(0) = @)1 = 0(0)] = 20(0).
(48a)
alﬁolgogir) = -3 -2a(7) +26(7) + (1) (48b)

Taking then the log of both sides of (45) and then the
derivative with respect to logz, we end up with

a—-(m+2)f—2n+ 1)y

2
=n—-14+nQRa-2p—-y)+n ’

1—-w

A
log<1+bm & )
1-v

(49)

—n(l1+2a=-2-y)+

dlogt

Since the NLO approximation is O(A), we have to expand
the log term on the right-hand side to first order in A to be
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consistent. After some simple algebra, one then eventually
arrives at

v b, A

LA —0.
l-v (1-0v)?

a=2f—y+1-—mpf—-2nly+

(50)

First, we observe that in order for this equation to hold for
any n and m (as it should during prescaling) one has to
impose

a(t) =2p(z) —y(r) +1=0. (51)

One immediately recognizes in (51) the scaling relation that
follows from conservation of the total particle number [24].
This reflects the particle-number-conserving nature of the
elastic collision kernel. It is then suggestive to also demand
that the term containing m and the term containing n should
individually vanish identically, too. This would result in
another constraint,

p(x) =0, (52)

which together with (51) indicates energy conservation
[24]. The remaining equation then reads

v b, A
=—". 53
A g (1-wv)? (53)

For this condition to hold b,, has to be m independent.
Since

(0)

¢ 11 (7o)
b, =—m—1— Lm 54
oo (o nom(70) 549

see (28), the latter holds as long as ny,,(zg)/no. (7o) does
not depend on m. An important class of distributions, for
which this condition is always satisfied, is given by
separable distributions, i.e., f(zo, pr, p.) = f1(70, p7) X
f2(70, P2)-

We have already derived the equation (48a) governing
the dynamics of v during prescaling. To obtain a similar
equation for the remaining scaling exponent y, we first take
one more logarithmic derivative of both sides of (53):

y+9/(1-v)* odlogA 20
y+v/(1-v) dlogz

, (55)

1-w
where O = dj,,,O. Finally, using (48a) and (48b) and

imposing the constraints (51) and (52) one ends up with the
system of differential equations:

k = B(x), (56)

i3 T T T T LI &l

L = N
05Ff \Q\\\é\g‘

V0.0

I N D
ol R T W
—110‘ - ‘—015‘ - ‘0.10 T ‘015 110
v

FIG. 2. The flow diagram of (57). The sole fixed point
(1/3,—1/2) corresponds to the bottom-up scaling [2].

where we have introduced k = (7, v), and

v +20—1—-(1-v)? +4(1-v)y

BJ/(K) = (1- U)z ’

(57a)

B,(k)=y—-1—-(y+ 1) (57b)

The above equations resemble flow equations describing

a running of couplings in the context of renormalization

group flow. The flow diagram of (57) is depicted in Fig. 2.

Scaling is achieved when the flow reaches a fixed point,

B(k,) 20, (58)

Using (57) one recognizes the standard bottom-up scaling
exponents,

a, =-2/3,

together with
v, =—1/2, (60)

cf. (39), as a stable fixed point of the flow equations (56).
Indeed, using the standard notation dk = k — K, one has

. bottom-u -2
ok = p<

32 _4/3>5x+0(5,<,2). (61)

The corresponding characteristic polynomial reads
(A+2)(A+4/3) resulting in two (simple) eigenvalues

Al - —2, 12 - —4/3, (62)
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with the respective eigenvectors
h, = (=4/9,1)7, h, = (0,1)". (63)

The general solution near the fixed point is therefore
given by

oK = Klf}”hl -+ Kzfﬂzhz, (64)
or explicitly,
40 o
Sy(r) = —§K11 . (65a)

ov(r) = K772 + Kyr™/3, (65b)

IV. CONCLUSIONS

In this work we studied the self-similar evolution
phenomena in Fokker-Planck type kinetic theory. Using
the Hamiltonian formalism of kinetic theory and adiabatic
approximation, we were able to derive the flow equations of
the time-dependent scaling exponents. The fixed point of
scaling exponents for the Fokker-Planck kinetic theory
coincides with the scaling exponents characterizing the
early stage of the bottom-up thermalization scenario [2].

Working at next-to-leading order in the small expansion
parameter, we found the relaxation rate for scaling expo-
nents to the fixed point and demonstrated its stability. This
analysis lays ground for the study of scaling phenomena in
more complex systems, such as full QCD kinetic theory.
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APPENDIX A: NON-HERMITIAN ADIABATIC
EXPANSION

In this appendix, we show how one can systematically
solve equations of the kind

o, lw(y)) = —H(g(y)lw(y)). (A1)

where H is diagonalizable but not necessarily
(anti-)Hermitian. Following [32], we first want to find a

transformation U that diagonalizes A at each instance y,
U(q)™ H(q)U(q) = diag(41(9).2a(q)-..) =Ha(q). (A2)

For example, in the standard basis {|k) } this transformation
reads

. H(q)|vi(q)) =2 (q)|vi(q))-

Ulq)=> |vi(q))(k
(A3)

Let |y) be a solution to the equation (Al). Define the
“equivalent solution,”

() =U(a() " w (). (A4)
that satisfies
Al () =~He(g())lx(v)): (AS)
with
H.(q) = Ha(q) + U(q)™'0,U(q). (A6)

We now split the second term into diagonal and off-
diagonal parts and introduce

N

Hy(q) = Ha(q) + diagonal partof [U(q)~'9,U(q)] (A7)
and
V(q) = off-diagonal partof [U(q)~'9,U(q)],  (A8)
so that
H.(q) = Ho(q) + V(q). (A9)

One can already guess that the diagonal part H(g) governs
the adiabatic element of the evolution, whereas the off-
diagonal piece V(q) gives rise to nonadiabatic transitions
between the quasienergy levels. Furthermore, since V(q)
vanishes when there is no time-dependence we anticipate
that one can treat V(g) as a perturbation when ¢(y) depends
on y slowly enough. We will therefore look for solutions in
the form

(A10)

116025-7
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Here,
0, (y)) = —=Ho(q(y))lx ().

o,y (y)) = -F

(Alla)

= —Hy(qy)" () = V(@) "=V ().
(A11b)

for [ > 1. The zeroth order solution is given by

0()) = exp [— I dzﬁow(z)ﬂ ZO0).  (AL2)

with [¢(0)) = U(q(0))~|y(0)). It is convenient to work in
the basis of eigenvectors ﬁlo, which we can choose to be

0) =

L=

1 0
0 1
0 ol o (a3)

The corresponding eigenvalues read €, = 4, + d,y,, with
¥
) = [ azalvia@) .U, (A14)

Expanding the /th order solution in this basis as

) =S exp [— I dzen<q<z>>} n) (ALS)

and substituting it into (A11) we obtain, for [ > 1,

;aycﬁi) () exp [— [ azentaten|m

e |- [ dzen(ata)|m

_ _ch,p Wentatew [~ [ denta(c)|m

=S e |- [ aentaten| gt
(A16)

where we have used Ho|m) = €,,|m). First, we notice that
the last term on the left-hand side cancels the first term on
the right-hand side. Multiplying both sides by (n| and using
the orthogonality condition (n|m) = §,,,, we then readily
obtain

—zm:Vnm(y)exp [— AY dswnm(s)] ),

(A17)

with
O (¥) =€ (q(y)) —€2(q(y)) (A18)
and
Van(y) = (nV(q(y))|m) (A19)
We thus conclude
Z / dzV (2 exp{ / s, (s )]
x (). (A20)

As a final remark, we note that tedious, yet straightforward
computations show that there is also no ambiguity regard-
ing the choice of the instantaneous eigenfunctions |v,(g)).
In other words, |y()) are invariant under reparametrizations

|0 () > et

Noe()) (A21)

at each order of perturbation theory.

APPENDIX B: COMPUTATION OF U, H,, AND V

1. Solving eigenproblem

To find a transformation U that diagonalizes the matrix
(10), one shall solve the corresponding eigenproblem,

H(q)|vis) = Aalves)- (B1)

Here, the subscript enumerates eigenvalues and eigenvec-

tors. Since A has a block diagonal structure, it obviously

suffices to study only one block as generalization to the full
case is straightforward. In Dirac notation,

> (nld(g)|n')(n'vg)

n

= Ai(n|vg), (B2)

with
(n|H(q)|n')

Since H — Al is bidiagonal and the determinant of a
bidiagonal matrix is equal to the product of its diagonal
elements, the characteristic equation simply reads

=2n+ 1),y —q2n(2n—1)8,_1,. (B3)

[[ek+1-2)=o0. (B4)
n>0
from which we easily deduce
A =2k + 1. (B5)
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Plugging this into (B2) yields the recursion relation

n—=k

_— > 1.
gn(2n—1) "=

(n— 1) =

(nlvg), (B6)

One can verify that (n < k|v;) = 0. It is then suggestive to
set (k|v;) = 1 and compute the remaining components of
each eigenvector ascending with

(n|vy) = f%%ﬁm —1v), n>k (B7)
Hence,
(nloy) = p]jkﬁcp ~1)g
n\ 2n—-1)!
(1) sk o

Here, we have used

“op (kD) (k+2)on ! <n>

p>kp_k_ 12(n—k) k!(l’l—k)' k
(B9)
and
- " 2p=1)  (2n-1)
(2P - 1) = 17—1 = , (BIO)
1£Ik @2p=1)  (2k-1)N
with the standard convention (—1)!! = 1. We therefore
conclude
ny Cn=D S
Unm(q) = { (m) (2m—l)!!q , nzm, (Bll)
0, otherwise.

2. Finding U(q) 1
For brevity, we are going to temporarily denote the

entries of U(g) and U(q)~! by a,,,, and b,,,, respectively.
Let us prove that

U(g)™

We are going to do so by induction. First, we note that since
U(q) is lower triangular, U(q)~" is also lower triangular.
The diagonal elements of a product are then just a product
of diagonal elements, which implies 1 = a,,b,, = b,,-
The second row yields, on top of that, one nontrivial
condition:

= U(=q) & byy = (=1)""a,,.  (B12)

0 = ayoboy + aybiyg = ayg + by = by = —ay,. (B13)

Now that we have already showed the base case, it is only
left to show that if by, = (—1)"*ay, for k < m, then

byn = (=1)""™a,,,. In general, the mth row results in
m — 1 nontrivial conditions of the form

> @b =0. I=1...m  (Bl4)
k=m—I
from which it follows
m—1
mm 1= Z amkbkm 1= = Z (_l)k_m+lamkakm—l’
k=m—I1 k=m—1
(B15)

where we have used that, by assumption, b, = (—1)"*ay,

for k < m. Now we plug in the expression for a,,, to get

m—1
m! k!
bmm— = <_1)k—m+l

: k:zn:z—l k{(m—k)t(m =) k—m+1)!

L @m-DU (k-1 —
2k =11 2m—=21—1)!!
(2m—1)!! L (=)t

m
(2m—21—1)N( v; l—r Il

r=k=m+l

(B16)

It remains to show that the last sum is equal to (—1)/1!.
Indeed,

- r+1 1 -1 (—l)l
=—— B17
;l—r)‘r‘ lZ ( ) n (B17)
where we have used the identity
k n n—1
S (M) = (") e
r=0 r k
Plugging this into (B16) we finally get
m 2m—1)!
b = 7 _(—q) = (U(- ,
mm—I < i ) (zm —2]— 1)”( Q) ( ( Q))mm—l
(B19)

which closes the proof.

3. Computing ﬁo and V

Finally, let us compute H,, and V. To that end, we first
take the derivative of U(q) using (B11):

(n)(Zn—l)!!

(2m—1)!z(n—m)qn_m_la

g, n>m,
ayUnm(Q) = { ’

0, otherwise.
(B20)
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Since d,U(q) is again lower triangular and, in addition, its
diagonal elements are all zero, and U(q)~' is lower

triangular, too, the product of two, U(g)~'0,U(q), will
|

k!

be lower triangular with zero diagonal elements as well.
Hence, [U(q)'0,U(q)],, =0 for n<m. To get the
remaining entries, we simply multiply the two matrices:

(2n — 1)1 (2k = 1)!!

U@, =9 D A0 =B mi(k—m)! (k=) Zm = 1)1

k=m+1

= 0yq(=q)" ™" (m + 1)

(k= m) (1)t g

2 0 () ()
))’!!, B
(B21)
)0
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